• Ryan Center for Sports Medicine
  • Shapiro Ambulatory Center
  • Maximizing Athletic Performance

    Advanced Arthroscopic Surgery

  • Rebuilding Reliable Joints

    Shoulder Replacement & Complex Reconstruction

  • Maximizing Shoulder Range of Motion

    Advanced Cartilage Restoration

  • Helping You Achieve Your Goals

    Patient Centered Care & Excellent Outcomes

  • Play
  • Pause
Home / Research » Trabecular Bone Microarchitecture and Characteristics in Different Regions of the Glenoid

Trabecular Bone Microarchitecture and Characteristics in Different Regions of the Glenoid

Li X, Williams P, Curry EJ, Choi D, Craig EV, Warren RV, Gulotta LV, Wright TM.  Trabecular bone microarchitecture and characteristics in the different regions of the glenoid. Orthopedics. 2015 Mar;38(3): e163-8.

Abstract
Success of shoulder surgery depends on implant fixation to the glenoid trabecular bone. The purpose of this study was to evaluate the anatomic characteristics of the normal glenoid trabecular bone microarchitecture to help assist in implant design and provide data for finite element analyses. Eight cadavers without evidence of osteoarthritis were used. Glenoids were scanned with micro-computed tomography and then divided into lateral and medial, then superior, inferior, anterior, and posterior quadrants (8 total segments). Each segment was analyzed for total mineral density, bone volume fraction, structure model index, and trabecular thickness (Tb.Th), number (Tb.N), and separation. Bone volume fraction was significantly higher (P<.05) in the posterolateral (20.8%±4.5%) and posteromedial (18.6%±2.5%) regions. Both Tb.N and Tb.Th were also highest in the posterolateral (Tb.N, 1.74±0.374 mm; Tb.Th, 0.148±0.017 mm) and posteromedial (Tb.N, 1.49±0.401 mm; Tb.Th, 0.165±0.016 mm) regions. Trabecular separation was greatest in the superomedial segment (1.00±0.181 mm) and lowest in the posterolateral region (0.663±0.121 mm). For structural model index, both the posterolateral (0.314) and posteromedial (0.312) regions had lower values than the other regions. The posterior segment of the normal glenoid in both the lateral and medial regions has the highest density, which is attributed to the increased trabecular number and thickness with decreased separation. This increased density may be attributed to the posterior directed loading of the glenohumeral joint. The trabecular microarchitecture in the glenoid is plate-like, as indicated by the low structural model index.[Orthopedics. 2015; 38(3):e163-e168.]. Copyright 2015, SLACK Incorporated.
 

 

  • american-academy-orthopaedic-surgeons
  • american-orthopaedic-society-for-sports-med
  • Reserchgate
  • orthopaedic-research-society
  • american-arthroscopic-association-north-america
  • american-shoulder-and-elbow-surgeons
  • boston-medical-center
  • boston-university
  • boston-university-school-of-medicine
  • depuy-synthes
  • boston-university-orthopaedic-surgery
  • easter-orthopaedic-association
  • tornier