• Maximizing Athletic Performance

    Advanced Arthroscopic Surgery

  • Rebuilding Reliable Joints

    Shoulder Replacement & Complex Reconstruction

  • Maximizing Shoulder Range of Motion

    Advanced Cartilage Restoration

  • Helping You Achieve Your Goals

    Patient Centered Care & Excellent Outcomes

  • Play
  • Pause
Home / Research » Biomechanical investigation of a novel ratcheting arthrodesis nail

Biomechanical investigation of a novel ratcheting arthrodesis nail

McCormick JJ, Li X, Weiss DR, Billiar KL, Wixted JJ.  Biomechanical investigation of a novel ratcheting arthrodesis nail.  Journal of Orthopaedic Surgery and Research.  2010 Oct 14; 5:74. 1-6.

Abstract
Knee or tibiotalocalcaneal arthrodesis is a salvage procedure, often with unacceptable rates of nonunion. Basic science of fracture healing suggests that compression across a fusion site may decrease nonunion. A novel ratcheting arthrodesis nail designed to improve dynamic compression is mechanically tested in comparison to existing nails. A novel ratcheting nail was designed and mechanically tested in comparison to a solid nail and a threaded nail using sawbones models (Pacific Research Laboratories, Inc.). Intramedullary nails (IM) were implanted with a load cell (Futek LTH 500) between fusion surfaces. Constructs were then placed into a servo-hydraulic test frame (Model 858 Mini-bionix, MTS Systems) for application of 3 mm and 6 mm dynamic axial displacement (n = 3/group). Load to failure was also measured. Mean percent of initial load after 3-mm and 6-mm displacement was 190.4% and 186.0% for the solid nail, 80.7% and 63.0% for the threaded nail, and 286.4% and 829.0% for the ratcheting nail, respectively. Stress-shielding (as percentage of maximum load per test) after 3-mm and 6-mm displacement averaged 34.8% and 28.7% (solid nail), 40.3% and 40.9% (threaded nail), and 18.5% and 11.5% (ratcheting nail), respectively. In the 6-mm trials, statistically significant increase in initial load and decrease in stress-shielding for the ratcheting vs. solid nail (p = 0.029, p = 0.001) and vs. threaded nail (p = 0.012, p = 0.002) was observed. Load to failure for the ratcheting nail; 599.0 lbs, threaded nail; 508.8 lbs, and solid nail; 688.1 lbs. With significantly increase of compressive load while decreasing stress-shielding at 6-mm of dynamic displacement, the ratcheting mechanism in IM nails may clinically improve rates of fusion.
  • american-academy-orthopaedic-surgeons
  • american-orthopaedic-society-for-sports-med
  • Reserchgate
  • orthopaedic-research-society
  • american-arthroscopic-association-north-america
  • american-shoulder-and-elbow-surgeons
  • boston-medical-center
  • boston-university
  • boston-university-school-of-medicine
  • depuy-synthes
  • boston-university-orthopaedic-surgery
  • easter-orthopaedic-association
  • tornier